H(t)=5t^2+24t+3/2

Simple and best practice solution for H(t)=5t^2+24t+3/2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=5t^2+24t+3/2 equation:



(H)=5H^2+24H+3/2
We move all terms to the left:
(H)-(5H^2+24H+3/2)=0
We get rid of parentheses
-5H^2+H-24H-3/2=0
We multiply all the terms by the denominator
-5H^2*2+H*2-24H*2-3=0
Wy multiply elements
-10H^2+2H-48H-3=0
We add all the numbers together, and all the variables
-10H^2-46H-3=0
a = -10; b = -46; c = -3;
Δ = b2-4ac
Δ = -462-4·(-10)·(-3)
Δ = 1996
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1996}=\sqrt{4*499}=\sqrt{4}*\sqrt{499}=2\sqrt{499}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-46)-2\sqrt{499}}{2*-10}=\frac{46-2\sqrt{499}}{-20} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-46)+2\sqrt{499}}{2*-10}=\frac{46+2\sqrt{499}}{-20} $

See similar equations:

| 124000=x+x(3) | | 124000=x+x3 | | 18x=5000 | | x+.0945x=130 | | x.3=124000 | | x+09.45x=130 | | 21-x=255 | | x+9.45*x=130 | | 950+900=4x=850+500+8x | | 8x=8x+10 | | 2/3(x+2)=1/4(x-3) | | 9x+3+3×=63 | | 3x6^4-48x^2=0 | | 7849=x-3001 | | x-3001=7849 | | 2(x+5=8) | | 8x+3-10x=-2(x-2+3 | | 2x-1-x/4=3 | | 20x+3=0 | | 2(x-5=8) | | -11j=55 | | 6x/6=6 | | 3007=7863-x | | (2m^2/3)+m-1=0 | | x-3007-x=7863 | | 16x-3=2*2x+4 | | x-3007=7863 | | -40=12x+13 | | 5x+12=7x-18 | | 3x+6=-9x-5 | | (5x-4)(x+1)=1 | | 16-6x=-44 |

Equations solver categories